
ELE00026C - Digital Systems Coursework

Y3903727

December 4, 2023

Abstract

This report focuses on interrupts. The report starts with a definition of what in-
terrupts are (in theory), then looks at practical uses of interrupts in a modern
computer system. From there, this report shows an example of an interrupt con-
troller (IC) used in the STMicroelectronics STM32 Nucleo-64 MCU Development
Board, a popular microcontroller development board. Finally, this report explains
how to design a simple example IC for use with a previously designed 4-bit CPU,
ending with a conclusion and references section.

Contents
1 Interrupts: An Introduction 1

1.1 Interrupts . 1
1.2 Uses of Interrupts . 1

2 The STM32 Nucleo-64 MCU Development Board 2
2.1 How the STM32 Nucleo-64 Handles Interrupts 2
2.2 Interrupt Sequence on the STM32 3

3 Interrupt Controller Design 3
3.1 Specifications . 3
3.2 Block Diagram . 4
3.3 State Transition Diagram . 4
3.4 Further Information . 4

4 Conclusion 5

5 References 5

1 Interrupts: An Introduction

1.1 Interrupts
Interrupts are signals from a device to the CPU to interrupt execution of the current

instructions. This signal is called an Interrupt Request (IRQ), and is represented
by either one or multiple hardware lines to the CPU. When the CPU receives an IRQ
(usually checked after the current instruction has finished 1), the current state of the CPU
is stored on the stack (program counter (PC), processor mode, current register values)
for later restoration. The CPU will then branch to a predetermined location specified
in the Interrupt Vector Table (IVT). The IVT specifies all of the addresses for each
of the Interrupt Service Routines (ISR). An ISR is a block of code which describes
what to do when a given IRQ is received. Once the ISR has finished2, the CPU state is
restored from the stack and execution of the next instruction begins.

Interrupts can also be called from software or by the processor. To distinguish between
hardware interrupts and software interrupts we call software interrupts exceptions3. In-
terrupts are asynchronous events whereas exceptions are synchronous events. Both are
handled the same within the processor.

Interrupts may have different priorities. If two priorities are received at the same
time, the interrupt with the highest priority will be executed first. Interupt priority is
set according to the order of the IVT. Also, depending on the implementation, nested
priorities may be allowed. With nested priorities, if a higher priority interrupt is received
while a lower priority interrupt is being handled, the lower priority’s state is saved and
pushed to the stack and the higher interrupt is handled.

Interrupts can be selectively ’masked’ by the processor. The processor stores a mask
of which interrupts are enabled. Some interrupts are not able to be masked. Inter-
rupts which are able to be masked are called maskable interrupts, whereas interrupts
which cannot be masked are called non-maskable interrupts (NMI). Non-maskable
interrupts are high-priority events which should never be interrupted, such as reporting
non-recoverable hardware errors or forcing a system restart.

1.2 Uses of Interrupts
Interrupts have a myriad of uses within a computer system. One such use is with

peripherals, where new data may not always be available such as with a keyboard Most
major PS/2 driver implementations make use of interrupts. 4 Interrupts cut down on
wasted cycles spent polling the keyboard when no data is being sent (i.e small breaks

1Marilyn Wolf writes that ’the CPU checks for interrupts at every instruction’[1], therefore interrupts
cannot happen mid-instruction.

2In the x86 ISA, the ISR ending is denoted with the iret opcode, which denotes the process of
pushing the previous state from the stack and resuming execution of the interrupted program [2]

3Exceptions can be split further into faults, traps, and aborts depending on how they are handled
and whether they are recoverable or not, according to the IA-32 architecture[2]

4For example, the linux kernel uses an interrupt based driver for PS/2 and AT keyboards.[3] The PS/2
driver used in Windows also uses an interrupt based system. [4]. Apple has never directly supported
PS/2.

1

when no-one is typing). When a keypress occurs, an IRQ is sent to the CPU. The CPU
then branches to the IVT where a pointer to a user-defined ISR is located, which then
handles the keyboard input (usually by storing the inputs into some form of buffer).
Other peripherals could use a similar mechanism, such as a PS/2 mouse which only sends
interrupts when a change of state occurs (i.e. mouse button clicked or mouse moved).

Another use of interrupts would be with hardware timers. Hardware timers would
allow interrupts to be sent periodically. One such use of this would be to keep track of
time, such as creating a program that increments a counter every second to display the
time. One pertinent use of periodic interrupts is with scheduling the running of multiple
different processes/resources in a timely fashion (for example by giving each process an
equal portion of time to run before switching to the next process5).

2 The STM32 Nucleo-64 MCU Development Board

2.1 How the STM32 Nucleo-64 Handles Interrupts
The STM32 Nucleo-64 MCU F303RE (shortened to the STM32 in this report) uses an

ARM Cortex-M4 microcontroller. The ARM Cortex-M4 has multiple exception types:

Reset Async NMI sent on power up or reset. Highest priority (-3)

NMI Async NMI sent by either peripheral or by software. Second highest priority (-2)

Hard Fault NMI sent if an exception occurs when handling an exception or if an ex-
ception cannot be managed (i.e. if no position in IVT). Third highest priority
(-1)

MemManage Exception sent for a memory protection related fault. Configurable pri-
ority.

Usage Fault Exception sent for faults related to instruction execution. Configurable
priority.

SVCall Exception triggered by the OS to access kernel functions and device drivers.
Configurable priority.

PendSV Exception used by the OS for context switching. Configurable priority.

SysTick Exception generated by the system timer when it reaches 0 (see subsection 1.2
for uses). Configurable priority.

IRQ General interrupt called by peripherals or a general exception called by software.
Configurable priority.

Priorities are handled from the lowest numbered priority (-3) to the highest numbered
priority (configurable). All interrupts with negative priority are NMI, the rest are mask-
able[5]

5This is a description of the Round-robin scheduler, a simple to implement process scheduler

2

The Interrupt Controller (IC) in the STM32 is referred to as the NVIC (nested vectored
interrupt controller). As the name states, the NVIC supports nested interrupts. The
NVIC is able to handle up to 73 maskable interrupt channels and 16 priority levels[6].
The NVIC automatically pushes the state of the CPU on the stack on entry, and pops
the state off the stack on exit with no instruction overhead.

2.2 Interrupt Sequence on the STM32
An IRQ event is received by the NVIC on one of its input lines. The NVIC then

checks the interrupt set-enable and interrupt clear-enable registers. These registers
show which interrupts are enabled or disabled6. If the interrupt is disabled, ignore the
interrupt (unless it is NMI). Since some interrupts can have configurable priority (see
subsection 2.1), the the interrupt priority registers (IPR) are checked. Each IPR can
store 4 priorities for 4 interrupts (referred to as a priority field [5]) ranging from 0-255.
The interrupt with the highest priority (if there are multiple priorities waiting) is sent to
the CPU, where the NVIC will automatically stack the current state of the CPU. The
sequence carries on as described in subsection 1.1.

3 Interrupt Controller Design

3.1 Specifications
The specifications of the IC are described in the assignment brief. The IC should be

designed as a modification to the 4-bit Control Unit developed in the lab sessions. The IC
will only be able to respond to one IRQ at a time (i.e. no nested interrupts). There will
only be one IRQ. Upon receiving an IRQ, the current PC value should be incremented
and stored, along with forcing the PC to the value 16 (10000b). At the end of the ISR,
the PC should be restored. Any pending IRQs should be inhibited until the end of the
ISR.

The control word used is shown below.

6The NVIC has two sets of registers to determine what is enabled and disabled in order to prevent
race conditions

3

3.2 Block Diagram
The following is a block diagram of the relevant changes to the Control unit:

3.3 State Transition Diagram
The following is a Mealy FSM model of the interrupt controller:

Starts at S_i, key is IRQ, RELEASE / LOCK, LD_EN

3.4 Further Information
The control word (see subsection 3.1) has been modified to create the opcode for leaving

the ISR. The least significant bit has been wired to the IC’s RELEASE pin (see subsec-
tion 3.2). Therefore, the control word to leave the ISR would be 0001000000000001.

4

The following is a timing diagram of the entry into the ISR and release from the ISR:

The left side shows entry into the ISR, where the IRQ is set high, causing LOCK to
be high and locking the clock to PC_L (so it can no longer update its value). The PC
is set to 16 (10000b) and the ISR starts from there. The right side shows the exit from
the ISR, where REL is set high, causing LOCK to be set low and unlocking PC_L’s
clock. PC_L’s value is then incremented (see subsection 3.2) and sent to PC, where the
program returns as normal from the interrupt.

4 Conclusion
This report has shown an example interrupt controller that complies with the given

specification, along with adequately describing what interrupts are, and a real-word ex-
ample of an IC. Further improvements to the IC would be by adding multiple different
IRQ’s, or allowing nested interrupts.

5 References
[1] M. Wolf, “Computers as components : Principles of embedded computing system

design,” in Elsevier, 2017, ch. 3.
[2] Intel, Intel® 64 and ia-32 architectures software developer’s manual, 2022, ch. 6.

[Online]. Available: https://www.intel.com/content/www/us/en/developer/
articles/technical/intel-sdm.html.

[3] V. Pavlik. “Atkbd.c - at and ps/2 keyboard driver.” (2022), [Online]. Available:
https://github.com/torvalds/linux/blob/master/drivers/input/keyboard/
atkbd.c. (accessed: 02.05.2022).

[4] Microsoft. “Ps/2 (i8042prt) driver.” (2021), [Online]. Available: https://docs.
microsoft.com/en-us/windows-hardware/drivers/hid/ps-2--i8042prt--
driver. (accessed: 02.05.2022).

[5] ARM, Cortex-m4 devices - generic user guide, 2010. [Online]. Available: https://
documentation-service.arm.com/static/5f2ac4ab60a93e65927bbdbf?token=.

5

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://github.com/torvalds/linux/blob/master/drivers/input/keyboard/atkbd.c
https://github.com/torvalds/linux/blob/master/drivers/input/keyboard/atkbd.c
https://docs.microsoft.com/en-us/windows-hardware/drivers/hid/ps-2--i8042prt--driver
https://docs.microsoft.com/en-us/windows-hardware/drivers/hid/ps-2--i8042prt--driver
https://docs.microsoft.com/en-us/windows-hardware/drivers/hid/ps-2--i8042prt--driver
https://documentation-service.arm.com/static/5f2ac4ab60a93e65927bbdbf?token=
https://documentation-service.arm.com/static/5f2ac4ab60a93e65927bbdbf?token=

[6] STMicroelectronics, Stm32f303xd stm32f303xe datasheet, 2016. [Online]. Available:
https://www.st.com/resource/en/datasheet/stm32f303re.pdf.

6

https://www.st.com/resource/en/datasheet/stm32f303re.pdf

	Interrupts: An Introduction
	Interrupts
	Uses of Interrupts

	The STM32 Nucleo-64 MCU Development Board
	How the STM32 Nucleo-64 Handles Interrupts
	Interrupt Sequence on the STM32

	Interrupt Controller Design
	Specifications
	Block Diagram
	State Transition Diagram
	Further Information

	Conclusion
	References

