
Cloud and Distributed Computing: Practical Essay Y3903727

Comparison of Request/Reply
Protocols

Cloud and Distributed Computing: Practical Essay

1 Introduction

Request-Reply protocols are at the heart of every distributed system, as communication is a
necessity. With the rise of the internet, one of the largest distributed systems, it has been shown
that a good understanding of the protocols available, their applications, their limitations, and how
they handle errors is critical to a modern-day developer. In this report, we compare and analyse
three different protocols that have been studied throughout the module and within the labs. Starting
off, we give an overview of each of the protocols and how they specified. From this we derive issues
of each protocol, as well as its uses. Finally, we compare each protocol in terms of real-life coding,
comparing ease-of-coding and other aspects within the context of developing a chat application. From
each of these sections, we can then summarise each protocols positives and negatives, in terms of both
theoretical and practical studies.

2 Protocol Overview

2.1 TCP/IP

Application
Layer

Transport
Layer

Internet
Layer

Link
Layer

Figure 1: The
TCP/IP protocol
stack; lower layers
are closer to
hardware, higher is
more abstracted[1],[2].

TCP/IP are a set of protocols that are used to facilitate communication
between processes over networks. The Internet Protocol (IP) is a protocol
that handles sending fixed-size packets of data to/from an IP addresses on
a network[3]. This is done within the Internet layer, as seen in Figure 1.
Transmission Control Program (TCP) is a protocol within the Transport layer
responsible for sending messages between processes. It aims to create a more
reliable connection than IP alone. To this aim, TCP is connection-orientated,
meaning that connections must be negotiated and explicitly started/stopped
by both sender and receiver[4]. Messages are allowed to be arbitrarily long,
splitting them into segments able to be sent via IP where needed. Furthermore,
each segment is given a ’sequence number’ which dictates in what order the
segments should be recombined at the receiver’s end, along with including a
checksum. Once a segment has been received, an acknowledgement (ACK) is
replied. If the sender does not receive an ACK for a particular segment, that
segment will be retransmitted[5]. TCP also allows for control of the rate at
which messages may be sent. This is done by including a ’window size’ with each ACK, which defines
the amount of data that is allowed to be sent before blocking until the next ACK[3].

TCP/IP programming via a set of system calls, usually done through sockets[5]. Sockets are an
interface used as the endpoint of process-to-process communication. For a server, a socket is created
and ’binds’ a process to a given port number. This socket then advertises its availability for a
connection and blocks until a connection request is made. Then, communication can be done via
simple read() and write() system calls. For a client, the socket does not need to be bound to a port
explicitly, instead the socket tries to connect to a given IP address and port combination[4]. Once a
connection has finished, the sockets must be closed. This process is visualized in Figure 2.

It should be noted that TCP can incur an overhead for small transactions due to needing to explicitly
set up and close a connection before sending messages. TCP will declare a broken connection and
shutdown if there is high packet loss, severe congestion on the network or if the network has failed
entirely. Because of this, there is no guarantee for any message, including an ACK, to reach its

1

Cloud and Distributed Computing: Practical Essay Y3903727

socket()

socket()

bind() listen() accept()

connect()

Server

Client

Connection
Established

read() write() shutdown()

shutdown()read()write()

Communication

Figure 2: Typical socket communication using system calls. Adapted from [4].

destination, therefore TCP cannot be described as a fully reliable protocol[6]. Due to how the TCP
checksum is implemented to prioritise speed rather than security, the checksum is quite weak in
comparison to higher-level protocols and cannot be used to ensure integrity or validity of the message[7]

and another protocol should be used.

2.2 HTTP

HTTP is a higher-level protocol usually implemented on top of TCP/IP within the Application
layer. It is usually used to make requests to/from a web server and supports a fixed set of methods
for communication[3]. The most common methods are[4]:

GET Request to return document to client.

HEAD Request to return header of document to client.

POST Provide data for a document.

HTTP only has two types of messages: request and response. Messages consist of 3 parts, first
of which is the request line (for request) which specifies the method to use, what document to use
the method on and the version of HTTP. Alternatively (for response), a status line is given, which
specifies the status code, reason for status, and the HTTP version used. Next are the message
headers, specifying information about what the client can handle or additional details from the
server about the document. Finally, an optional message body which is typically used for a retrieved
document contents[3]. Since messages may include additional data, the protocol allows for rudimentary
authentication via credentials needing to be sent to the server and verified via the use of a challenge,
such as a phrase that is hashed with a given password[3].

GET /index.html HTTP/1.0 HTTP/1.0 200 OK
Host: info.cern.ch Content-Type: text/html
 <!DOCTYPE html>
 <head></head>
 <body>
 [...]

Example HTTP request message

Example HTTP response message
(truncated)

Figure 3: Example HTTP request and response messages. Each section of the message is highlighted.

Sending messages is implemented using TCP usually. Because of how HTTP is designed, no attempt
is made to recover from lost messages, and both client and server assume that the message has been
sent[4]. HTTP supports two different methods of communication. One is persistent communication,
where the TCP connection established stays open for more requests until explicitly closed by either
client or server. The other method is non-persistent communication, where the connection is closed
after one request-reply has been done. Persistent requests reduce latency due to not needing to
re-establish a connection but is only applicable for connections that need to send lots of files and have
bandwidth to spare[8]. Some clients allow the sending of multiple requests in a row to further decrease
latency at the cost of more bandwidth usage[4].

2

Cloud and Distributed Computing: Practical Essay Y3903727

2.3 Java RMI

Java RMI is an implementation of Remote Method Invocation (RMI) for Java-based programs. It
aims to make programming for distributed systems similar to programming for monolithic systems,
by hiding most of the detail in how the methods are transmitted and received. Java RMI, like HTTP,
is implemented on top of TCP/IP. Since both processes are running on the Java virtual machine, data
marshalling is not an issue[3]. In order to make remote methods visible, they must have an interface
that extends the Remote class. This interface defines the return type and parameters the methods can
take. Parameters may also pass-by-reference, allowing a remote method to access the object passed via
RMI as well. This would be near impossible to implement in TCP/IP and HTTP. Due to this, classes
may also be ’downloaded’ to one another, implemented via the inbuilt object serialization methods.

In order for the process to find the interface(s) necessary, the RMI Registry must be running. The
RMI Registry is a name service that allows the server to map an object that implements the Remote
interface to a name, akin to how DNS maps URLs to IP addresses[9]. This allows the client to query
the RMI Registry for an object with a given name, which then allows the client to receive the remote
interface.

3 Programming Comparison

Throughout the labs, we have developed example programs for each of the three protocols in Java.
In this section we compare each protocol’s ease of coding, length of code needed, robustness and
security of code. For certain points, the comparison will be put into the context of a chat application,
for which the specification can be found at Appendix D.

3.1 Length of Code

As can be seen in Appendices A, B and C, each client program only sends one request, and each
server only handles one request/one type of request. Below is a table listing line lengths for each
package, generate by use of the cloc program.

Protocol Client Length Server Length Total

TCP/IP 25 24 49
HTTP 25 20+29 74
Java RMI 18 25+7 50

Table 1: Line length of each package, not including blank lines or comments.

As can be seen from Table 1, each client package tends to stay similar in length no matter the protocol
used. In contrast, the length of the server package tends to increase with higher-level protocols,
potentially due to needing multiple classes to handle requests. It can be assumed that for increased
functionality, line length would increase. For Java RMI, it can be assumed that line length would
occur more within the server package, due to it containing both the interface definition and the
implementation of each method needed. For TCP/IP and HTTP, it can be assumed that line length
would occur roughly proportionally for both client and server due to the added overhead of constructing
and/or decoding of different requests.

3.2 Complexity of Code

The IEEE Standard Computer Dictionary the term code complexity is defined as “The degree to
which a system or component has a design or implementation that is difficult to understand and
verify”[10]. From this definition, we can say that more complex code tends to consist of multiple
objects, or tends to be based upon a more complex design. In terms of the design complexity of these
protocols, I would say that Java RMI has a more complex design than HTTP and TCP/IP, mainly due
to the idea of needing a RMI registry in addition to the processes running. However, implementation

3

Cloud and Distributed Computing: Practical Essay Y3903727

complexity varies depending on the program’s needs. For a chat application needing to call methods
from a simple API 1, it can be seen that Java RMI would potentially be a better option due to not
needing to marshal the method calls into messages for transmission. HTTP, which consists of a simple
design with a fixed set of methods and a stateless design, becomes much more complex due to the
limitations of the simple design. Potential ways to subvert the fixed set of methods would be to include
the actual methods called into the HTTP header or body instead, or to use the fixed set of methods
as they are but to force the client and server to interpret them differently.

From these points, we can determine that in terms of design complexity, Java RMI is the most
complex, then TCP/IP, with HTTP having the simplest design. In contrast for implementation
complexity, HTTP would be the most complex, then TCP/IP, then Java RMI being the simplest.

3.3 Error Handling and Recovery

As described previously, TCP/IP includes a checksum in each message by default. However this
checksum is quite weak in comparison to newer methods, and if a checksum error occurs, no attempt to
correct the message is made, instead ignoring the packet and requesting a retransmission[5]. TCP/IP
also does not distinguish between failures, so little can be done in the face of an error. HTTP, being
built upon TCP/IP also does not distinguish between network errors and process failures, however
due to its stateless design no guarantee is ever put on receiving a response and messages can be easily
retransmitted. HTTP also includes status codes in a HTTP response, with well-defined codes for a
myriad of errors along with a plain-text definition of the error in the message body. Java RMI has
excellent error handling with a variety of Exceptions implemented for different failures[11], however
error recovery for most errors is dependant on the programmer implementing it (if possible). Below
lists a table showcasing it’s effectiveness at handling errors and recovering from errors.

Protocol Error Handling Error Recovery

TCP/IP 1/5 2/5
HTTP 4/5 1/5
Java RMI 5/5 3/5

Table 2: A table ranking each protocol for its error handling and recovery ability. A higher score is better.

For a chat application specification we have designed, error handling is somewhat important, but
not critical to its function. Ideally, the chat application would be able to recover via retransmission
of data and to have verbose error handling if an error occurs. This would need to be implemented
by the programmer if TCP/IP is used. In Appendix D.3 is a potential format for implementing error
handling regardless of the underlying protocol.

3.4 Modularity

Modularity, for the chat application specifically, is the ability to increase the amount/types of
messages passed between client and server with as little change to the code as possible. As described
previously, HTTP is inherently poor at this due to the limitations of the fixed set of methods. Java
RMI easily supports more functions and calls, as all that would need to be changed is to add another
function to the interface and server implementation. However, for TCP/IP modularity can be done
but is still limited by its design. Since TCP/IP is a lower-level protocol and only sends streams of
bits[5], TCP has no idea of data types. Therefore if both the client and server needed to specify an
additional data type, both the client and server would need to ensure they knew the representation of
the new data type sent. However, for a chat application, this is less necessary as all messages can be
marshalled to characters for ease of transmission, especially since Java already includes functions for
converting Strings to a given data type[12].

1Refer to Appendix D for a list of the methods needed for the chat application.

4

Cloud and Distributed Computing: Practical Essay Y3903727

3.5 Security

Security is a concern for a chat application, as security issues could allow users to spoof other users,
or that the server could expose client’s IP addresses in extreme cases. TCP/IP inherently does not
implement much security due to the protocol being lower-level than other protocols. TCP/IP messages
are not encrypted in any way and would require a higher-level protocol to offer that functionality[5]

HTTP by default does not offer much security due to being implemented on top of TCP/IP. However,
this can be rectified by using HTTPS, which is instead implemented on top of TLS and requires signed
certificates for communication[13]. Likewise, Java RMI can be configured to block any traffic not from
another Java RMI process, and both machines can be secured with TLS. However, since Java RMI
and HTTP both run atop TCP/IP, they are not initially secure.

4 Summary

In summary, we have looked at how all three protocols work, their benefits and negatives for a given
chat application. From the analysis shown above, each protocol excels at a different section. For a
chat application specializing in secure communication, HTTP or RMI over TLS/SSL would be a good
option to mitigate security flaws. For a chat application that is expected to increase in complexity or
functionality, Java RMI would be a good option due to its use of interfaces and ease of adding remote
methods. For a very simple chat application, like the one specified in Appendix D, TCP/IP would
be best due to the small length of code needed to set up and the lack of design complexity. Overall,
from this analysis, modern-day distributed system designers should have a good understanding of the
implications of using a particular protocol and can extend what they have learnt into other real-life
applications.

References

[1] R. T. Braden, Requirements for Internet Hosts - Communication Layers, RFC 1122, Oct. 1989.
doi: 10.17487/RFC1122. [Online]. Available: https://www.rfc-editor.org/info/rfc1122.

[2] R. T. Braden, Requirements for Internet Hosts - Application and Support, RFC 1123, Oct. 1989.
doi: 10.17487/RFC1123. [Online]. Available: https://www.rfc-editor.org/info/rfc1123.

[3] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems: Concepts and
Design. Pearson Education Ltd., 2012.

[4] A. Tanenbaum and M. van Steen, Distributed Systems: Principles and Paradigms. Pearson
Education Ltd., 2007.

[5] Transmission Control Protocol, RFC 793, Sep. 1981. doi: 10.17487/RFC0793. [Online]. Available:
https://www.rfc-editor.org/info/rfc793.

[6] S. Porter, Communications 1/2, Lecture, 2023.

[7] J. Stone, M. Greenwald, C. Partridge, and J. Hughes, “Performance of checksums and crcs
over real data,” IEEE/ACM Transactions on Networking, vol. 6, no. 5, pp. 529–543, 1998. doi:
10.1109/90.731187.

[8] S. Porter, Communications 2/2, Lecture, 2023.

[9] Oracle. “Java platform se tools reference: Rmiregistry.” (2023), [Online]. Available: https:
//docs.oracle.com/javase/8/docs/technotes/tools/unix/rmiregistry.html (visited on
01/07/2024).

[10] “Ieee standard computer dictionary: A compilation of ieee standard computer glossaries,” IEEE
Std 610, pp. 1–217, 1991. doi: 10.1109/IEEESTD.1991.106963.

[11] Oracle. “Java remote method invocation specification appendix a: Exceptions.” (2023), [Online].
Available: https://docs.oracle.com/en/java/javase/21/docs/specs/rmi/exceptions.
html (visited on 01/07/2024).

5

Cloud and Distributed Computing: Practical Essay Y3903727

[12] Oracle. “Java language specification: Chapter 5.” (2011), [Online]. Available: https://docs.
oracle.com/javase/specs/jls/se7/html/jls-5.html (visited on 01/07/2024).

[13] R. T. Fielding, M. Nottingham, and J. Reschke, HTTP Semantics, RFC 9110, Jun. 2022. doi:
10.17487/RFC9110. [Online]. Available: https://www.rfc-editor.org/info/rfc9110.

6

Cloud and Distributed Computing: Practical Essay Y3903727

A TCP/IP Client/Server Program

Below lists the simplest TCP/IP client and TCP/IP server. The client sends one GET request and
awaits a response before closing. The server awaits one message, responds with a simple reply message
before closing.

A.1 client/Client.java

01 package client;

02

03 import java.net.*;

04 import java.io.*;

05

06 /**

07 * A simple single-threaded TCP/IP client. One request is sent and the response

08 * is sent to stdout before closing.

09 */

10 public class Client

11 {

12 private final static String DEFAULT_HOST = "localhost";

13 private final static int DEFAULT_PORT = 8000;

14

15 public static void main(String[] args)

16 {

17 try {

18 // create socket and accept server

19 Socket sock = new Socket(DEFAULT_HOST, DEFAULT_PORT);

20

21 // create io streams

22 BufferedReader in = new BufferedReader(new InputStreamReader(

23 sock.getInputStream()));

24 PrintWriter out = new PrintWriter(sock.getOutputStream(), true);

25

26 // request GET and block until response is given, then print

27 out.println("GET");

28 String response = in.readLine();

29 System.out.println("Response was: \"" + response + "\"");

30

31 // close io streams and socket

32 in.close();

33 out.close();

34 sock.close();

35 } catch (Exception e)

36 {

37 e.printStackTrace();

38 }

39 }

40 }

7

Cloud and Distributed Computing: Practical Essay Y3903727

A.2 server/Server.java

01 package server;

02

03 import java.net.*;

04 import java.io.*;

05

06 /**

07 * A simple single-threaded TCP/IP server that responds to one message before

08 * closing.

09 */

10 public class Server

11 {

12 private final static int DEFAULT_PORT = 8000;

13

14 public static void main(String[] args)

15 {

16 try {

17 //start server socket and wait for client to accept

18 ServerSocket s_sock = new ServerSocket(DEFAULT_PORT);

19 Socket c_sock = s_sock.accept();

20

21 //create io streams

22 BufferedReader in = new BufferedReader(new InputStreamReader(

23 c_sock.getInputStream()));

24 PrintWriter out = new PrintWriter(c_sock.getOutputStream(), true);

25

26 //block until request is received

27 String request = in.readLine();

28

29 //send response message

30 out.println("You sent request: \"" + request + "\"");

31

32 //close io streams and sockets

33 in.close();

34 out.close();

35

36 c_sock.close();

37 s_sock.close();

38 } catch (Exception e) {

39 e.printStackTrace();

40 }

41 }

42 }

8

Cloud and Distributed Computing: Practical Essay Y3903727

B HTTP Client/Server Program

Below lists a simple HTTP client and server. The server only handles GET requests. The client
only sends one request, prints the response and closes.

B.1 client/Client.java

01 package client;

02

03 import java.net.URI;

04 import java.net.http.*;

05 import java.net.http.HttpResponse.*;

06

07 public class Client

08 {

09 private static final String DEFAULT_HOST = "localhost";

10 private static final int DEFAULT_PORT = 8000;

11

12 public static void main(String[] args)

13 {

14 try {

15 // construct URI of server , i.e. http://localhost:8000

16 URI uri = new URI("http", null, DEFAULT_HOST, DEFAULT_PORT, null,

17 null, null);

18 // create httpclient to handle requests

19 HttpClient client = HttpClient.newHttpClient();

20

21 String requestMsg = "Custom message!";

22

23 // construct a HTTP request, defaults to GET request

24 // adds a header with a custom message requestMsg

25 HttpRequest request = HttpRequest.newBuilder().uri(uri)

26 .headers("message", requestMsg).build();

27 //sends message and blocks until response is given

28 HttpResponse<String> response = client.send(request,

29 BodyHandlers.ofString());

30 //prints response

31 System.out.println("Response was: \"" + response.body() + "\"");

32 } catch (Exception e) {

33 e.printStackTrace();

34 }

35 }

36 }

9

Cloud and Distributed Computing: Practical Essay Y3903727

B.2 server/Server.java

01 package server;

02

03 import server.RootHandler;

04

05 import java.net.*;

06 import com.sun.net.httpserver.*;

07

08 public class Server

09 {

10 private final static int DEFAULT_PORT = 8000;

11

12 public static void main(String[] args)

13 {

14 try {

15 // create http server on port 8000

16 HttpServer srv = HttpServer.create(new InetSocketAddress(

17 DEFAULT_PORT), 0);

18

19 // give class that handles requests to root directory

20 srv.createContext("/", new RootHandler());

21 srv.setExecutor(null); // use default executor

22 // start server

23 srv.start();

24 } catch (Exception e) {

25 e.printStackTrace();

26 }

27 }

28 }

10

Cloud and Distributed Computing: Practical Essay Y3903727

B.3 server/RootHandler.java

01 package server;

02

03 import com.sun.net.httpserver.*;

04 import java.io.*;

05

06 public class RootHandler implements HttpHandler

07 {

08 private void handleGetRequest(HttpExchange exchange) throws IOException

09 {

10 // strip custom message from header, then send response message

11 // with header

12 Headers headers = exchange.getRequestHeaders();

13 String message = headers.get("message").get(0);

14

15 String response = "You sent message: " + message;

16 exchange.sendResponseHeaders(200, response.length());

17

18 OutputStream out = exchange.getResponseBody();

19 out.write(response.getBytes());

20 out.close();

21 }

22

23 @Override

24 public void handle(HttpExchange exchange) throws IOException

25 {

26 // handle requests sent to root directory

27 // only deal with GET requests

28 String method = exchange.getRequestMethod();

29 switch (method)

30 {

31 case "GET":

32 handleGetRequest(exchange);

33 break;

34 default:

35 break;

36 }

37 }

38 }

11

Cloud and Distributed Computing: Practical Essay Y3903727

C Java RMI Client/Server Program

Below lists a simple Java RMI client/server example. The client only calls one remote method, then
closes. The server only implements one method to be called.

C.1 client/Client.java

01 package client;

02

03 import java.rmi.registry.LocateRegistry;

04 import java.rmi.registry.Registry;

05

06 import server.TestInterface;

07

08 public class Client

09 {

10 public static void main(String[] args)

11 {

12 try {

13 // find registry running on localhost

14 Registry reg = LocateRegistry.getRegistry("localhost");

15 // get stub for interface

16 TestInterface test_stub = (TestInterface) reg.lookup("Test");

17

18 // call remote method

19 String response = test_stub.testMethod();

20 System.out.println("Response was: \"" + response + "\"");

21 } catch (Exception e) {

22 e.printStackTrace();

23 }

24 }

25 }

12

Cloud and Distributed Computing: Practical Essay Y3903727

C.2 server/Server.java

01 package server;

02

03 import java.rmi.registry.Registry;

04 import java.rmi.registry.LocateRegistry;

05 import java.rmi.RemoteException;

06 import java.rmi.server.UnicastRemoteObject;

07

08 import server.TestInterface;

09

10 public class Server implements TestInterface

11 {

12 // remote method implementation

13 public String testMethod()

14 {

15 return "Called remote method!";

16 }

17

18 public static void main(String args[])

19 {

20 try {

21 Server srv = new Server();

22 // obtain stub of TestInterface object (Server)

23 TestInterface test_stub = (TestInterface) UnicastRemoteObject

24 .exportObject(srv, 0);

25

26 // find registry running on localhost

27 Registry registry = LocateRegistry.getRegistry();

28 // binds stub to given name

29 registry.bind("Test", test_stub);

30

31 } catch (Exception e) {

32 e.printStackTrace();

33 }

34 }

35 }

C.3 server/TestInterface.java

01 package server;

02

03 import java.rmi.Remote;

04 import java.rmi.RemoteException;

05

06 public interface TestInterface extends Remote

07 {

08 String testMethod() throws RemoteException;

09 }

13

Cloud and Distributed Computing: Practical Essay Y3903727

D Chat Program Specification

The chat program would aim to implement a chatroom program, where multiple clients could
connect to a central chatroom and communicate to each other. No client-client communication would
be implemented. The program aims for every request to be sent by the client for ease of programming,
therefore clients would be responsible for timely fetching of new messages. The methods (abstracted
from the underlying protocol) to be implemented would be as such:

join(username, host, port) Explicitly sets up connection if needed by underlying protocol. Asks
to join server at ’host:port’ with nickname ’username’. Should return 0.

leave() Notify the server that the client has disconnected. Explicitly closes connection if needed by
underlying protocol. Should return 0.

send message(message) Sends a message to the chatroom. Username and timestamp should be
appended implicitly before sending message by underlying protocol. Should return 0.

get backlog amount(timestamp) Queries the server on how many messages have been sent
since the given timestamp. Should return an integer denoting the amount.

get messages(amount) Returns an array of Message objects of size amount or fewer. Since no
integer is returned, instead treat an empty array as an error.

Upon any error, a corresponding error code should be returned instead, taking the form of a negative
integer instead.

D.1 Server

The server would be responsible for correct ordering of messages (dubbed the chatlog) depending
on the timestamp received within the send_message() request. Each new client that sends a join()

request should be given some form of ClientHandler class and thread that facilitates responding to that
client’s requests. Since multiple threads could try to modify and/or read the chatlog at one time, each
read/write should be queued for the main thread to respond, so that the server remains thread safe.
Upon receiving a leave() request, the ClientHandler should close itself and any necessary resources.
In lieu of an explicit leave() request, the ClientHandler should close itself if no request has been
received in 5 minutes.

D.2 Client

Since the client is responsible for both sending messages and fetching new messages, the client should
be implemented on multiple threads, one for dealing with the underlying protocol, where method calls
would be queued to ensure no requests are sent while waiting for a response, another thread for dealing
with checking backlog, fetching messages and displaying messages to the user, and a final thread for
dealing with user input and sending messages. Potentially, this could be cut down to a single thread
with efficient use of interrupts.

D.3 Message Format

Messages would be stored with these fields and data types. This implementation is inspired by how
HTTP implements its replys and responses. For transmission in TCP/IP and HTTP, this Message
object would need to be converted into an intermediary format.

PUBLIC CLASS Messages:

Int status_code

Long timestamp

String username

String method

String message_body

14

Cloud and Distributed Computing: Practical Essay Y3903727

For status_code, the code is 0 for a successful operation and negative for an error. This field is
only populated on server responses.
For timestamp, this is the timestamp of the message sent by the client or the message retrieved by
the server.
For username, this is the username of the message sent by the client or the message retrieved by the
server.
For method, this is the method called by the client. This should be copied to the message sent by the
server’s response.
For message_body, this is either the body of the message sent/retrieved, or a plaintext description of
the error if the status code is negative. It may also be used to store the amount of messages backlogged
when calling get_backlog_amount().

15

